Templates

Lecture 20

Templates

* Powerful software reuse feature of C++

Function templates — specify with a single code segment an
entire range of related (overloaded) functions

Class templates — specify with a single code segment an entire
range of related classes

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

Function overloading

* Perform similar or identical operations on different types of

data

void add(float a,float b)
{ cout<<(a+b); }

Note — operation
performed in the two
are identical, that Is
to add the two
arguments and print
the result

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

* These type of overloaded functions can be expressed more
compactly and conveniently using function templates

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

Function templates

#include<iostream.h>
#include<conio.h>

void main()
{

add(5,10);
add(2.5,3.5);

}

Compiler side

* Based on the argument types provided explicitly or inferred
from calls to this function, the compiler generates separate
object-code functions to handle each call separately

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

* Size of object file changes according to the number of types
used to call the function

Overloading function
templates

* A function template also can be overloaded by
providing non-template functions with the same
function name but different function arguments

void main()
{ add(5,10); add(2.5,3.5); add(‘f’,’g’); }

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

compiler

* Compiler uses overloading resolution to invoke the proper
function

* It first finds all function templates and ordinary functions that
best match the call

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

* If both template and ordinary function matches, then ordinary
is called

A function with two generic
types

o
(9]
o
N
o
_|
>
F—
©
>
[
©
-

void main()
{ display(10,’a’) }

Generic classes

Type of data (member) can be generic

Actual type can be specified at the time of making the object
of that class

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

Also know as parameterized types

Are useful when a class uses logic that can be generalized, for
example stack

Example

class mytempclass

{

private:

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

public:

void getdata() { cout<<'\n Enter data ' ; cin>>x; }
void display() { cout<<'\n x : "'<<x; }

I

void main()

{
obj.getdata(); obj.display();
obj.getdata(); obj.putdata();

Class exercise

* Write a function template isEqual that compares its two
arguments of the same type, which return true/false

o
(9]
o
N
o
—i
>
F—
©
>
[
©
S

* Also write main function in which this function is used for the
built in types (int, float and char)

